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Abstract— Trajectory optimization is a fundamental prob-
lem in robotics. While optimization of continuous control
trajectories is well developed, many applications require both
discrete and continuous, i.e. hybrid controls. Finding an optimal
sequence of hybrid controls is challenging due to the exponential
explosion of discrete control combinations. Our method, based
on Differential Dynamic Programming (DDP), circumvents this
problem by incorporating discrete actions inside DDP: we
first optimize continuous mixtures of discrete actions, and,
subsequently force the mixtures into fully discrete actions.
Moreover, we show how our approach can be extended to
partially observable Markov decision processes (POMDPs)
for trajectory planning under uncertainty. We validate the
approach in a car driving problem where the robot has to
switch discrete gears and in a box pushing application where
the robot can switch the side of the box to push. The pose and
the friction parameters of the pushed box are initially unknown
and only indirectly observable.

I. INTRODUCTION

Many control applications require both discrete and con-
tinuous, i.e. hybrid controls. For example, consider a car with
continuous acceleration and direction control but discrete
gears [1]. Switching gears changes the dynamics of the
car. Another example is pushing a box [2]–[4] where the
agent can select not only a continuous pushing direction and
velocity but also a discrete side to push. Hybrid control is
important also in other applications, for example, chemical
engineering processes involving on-off valves [5].

Hybrid control is an active research topic [1], [6]–[11]. In
this paper, we investigate systems with non-linear dynamics
and long sequences of hybrid controls and states (trajecto-
ries). We provide hybrid control trajectory planning methods
for optimizing linear feedback controllers in systems with
stochastic dynamics and partial observability which is a
challenging but common setting in robotic applications.

In the box pushing application that motivated this paper,
we investigate the problem of a robot pushing an unknown
object to a predefined location. Fig. 1 shows examples
of pushing trajectories generated by our hybrid control
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Fig. 1. Hybrid control box pushing. The robot tries to push the box with a
green finger to the grey target position without hitting the black obstacle in
the middle. The robot chooses at each time step a box side to push (discrete
action), and a continuous pushing velocity and direction (continuous action).
When pushed forward the box also rotates around the red center of friction.
Left: The robot observes the box fully and can predict box movement.
Right: The robot pushes a partially observed box with stochastic dynamics;
the actual red trajectory differs from the expected blue trajectory. Partial
observability makes trajectory optimization hard: pushing close to a box
corner increases the probability of missing the box. A hybrid approach can
directly switch the side to push and avoid considering moving the finger
over corners.

approach. In object pushing, the robot may not know in
advance the physical properties of the object such as the
friction parameters or the center of friction which is the
point around which the object rotates when pushed. The
actual center of friction and friction parameters may vary
considerably between different objects. Moreover, the robot
can only make noisy observations about the current pose of
the object, using, for example, a vision sensor. The robot
needs to take this observation and dynamics uncertainty into
account in order to accomplish its task. For example, when
pushing a box to a predefined location, the robot needs
to consider how to move its finger along the box edge.
However, if the robot is not certain about the actual pose of
the box it may miss the box when pushing close to the box
corners. This may make approaches with continuous control,
such as differential dynamic programming (DDP) reluctant to
consider moving the finger around box corners and converge
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to local optima as shown experimentally in Section VI. A
hybrid approach can directly switch the side of the box to
push and succeed under uncertainty.

For modeling trajectory optimization under both uncertain
dynamics and sensing we use a partially observable Markov
decision process (POMDP), and, model uncertain box push-
ing parameters as part of the POMDP state space. Moreover,
control limits are common in robotics; for example, joint
motors have physical limits. In the pushing application, the
pushing velocity and direction are limited. We show how to
add hard limits to DDP based POMDP trajectory optimiza-
tion, which has so far only been shown for deterministic
MDPs [12]. Below, we summarize the major contributions
of this paper:

• Hybrid Trajectory Optimization: We introduce trajec-
tory optimization with discrete and continuous actions
using differential dynamic programming (DDP).

• Extension to Partially Observable Environments:
We introduce the first POMDP trajectory optimization
algorithm with hybrid controls.

• Hard Control Limits: Inspired by hard-control limits
for trajectory optimization [12], we introduce hard con-
trol limits for POMDP trajectory optimization.

• Box-Pushing Application: We use for the first time a
POMDP formulation for pushing an unknown object in
a task specific way. Taking uncertainty into account is
required for performing the task.

II. RELATED WORK

In this paper, we consider hybrid control [1], [6]–[11],
[13] for finite discrete time trajectory optimization [14]
in systems with non-linear stochastic dynamics and noisy,
partial state information. We optimize time varying linear
feedback controllers producing a trajectory consisting of
states, covariances, and hybrid controls.

There are many methods for optimizing continuous control
trajectories [14]–[17]. Discrete controls present a challenge
due to the exponential number of discrete control com-
binations w.r.t. the planning horizon. The naive approach
of optimizing continuous controls for each combination of
discrete controls scales only to a few time steps. [18] uses a
tree of linear quadratic regulator (LQR) solutions for discrete
action combinations and introduces a technique for pruning
the tree but the tree may still grow exponentially over time.

[11] tries to find a local optimum by performing
continuous control optimization and local discrete control
improvements iteratively. Hybrid control problems can be
also translated into mixed integer non-linear programming
(MINLP) problems. However, in complex problems, hybrid
control MINLP solutions can be restricted to only a few time
step horizons [9]. [1] shows how to apply “convexification”,
introduced in [8], for discrete MINLP variables in fully
observable deterministic dynamic problems. “Convexifica-
tion” transforms discrete controls into weights replacing
the original dynamics function with a convex mixture. We
show how to apply a similar idea to differential dynamic
programming (DDP) with stochastic dynamics and partial

observations. Instead of using hybrid control for optimizing
trajectories, reinforcement learning approaches based on the
options framework can compute high level discrete actions,
also called options [19], and execute a continuous control
policy for each high level action.

RRTs. Rapidly-exploring random trees (RRTs) [20] are
often used for trajectory initialization. [21] uses RRTs in
hybrid control trajectory planning of fully observable sys-
tems. [22] uses also hybrid, that is, discrete and continuous
actions, for pushing objects from an initial three dimensional
configuration into another final configuration. Contrary to our
work, [22] does not do trajectory optimization and does not
take uncertainty into account.

POMDPs. Our proposed trajectory optimization approach
plans under model, sensing, and actuation uncertainty. [23]
and [24] investigate partial observations for computing
switching times in switched systems by providing simple
analytic examples of a few time steps. However, [23],
[24] do not model state uncertainty. Previously, planning
under uncertainty has been investigated in simulated robotic
tasks in [25]–[27]. [27] presents a sampling based POMDP
approach for continuous states and actions. [27] uses the
POMDP approach for Bayesian reinforcement learning in
a simulated pendulum swingup experiment. [28] use feed-
back based motion-planning with uncertainty and partial
observations. [28] target navigation type of applications and
use probabilistic roadmap planning to generate a graph
where graph nodes represent locations. One classic way of
dealing with observation uncertainty is to assume maximum
likelihood observations [15]. [17] uses shooting methods for
POMDP trajectory optimization. The POMDP approach of
[16] is based on iterated linear quadratic Gaussian (iLQG)
control with covariance linearization. In this paper, we extend
the fully observable iLQG/DDP [12] algorithm as well as
the iLQG/DDP based POMDP approach of [16] to hybrid
controls. We also show a straightforward way of using hard
control limits with iLQG/DDP based POMDP.

Box pushing. When pushing an unknown object a robot
needs to plan its motions and pushing actions while taking
model [29], sensing, and actuation uncertainty into account.
Therefore, we model the pushing task as a hybrid control
continuous state POMDP. We base our box pushing simula-
tion on the same quasi-static physics model [30] utilized in
[2]–[4]. [30] shows how to find out friction parameters but
not how to plan for a specific task. [31] discretizes the state
space potentially increasing the state space size exponentially
w.r.t. the number of dimensions (also known as the state-
space explosion problem). Instead of prespecified pushing
motions, our approach could be used for planning pushing
trajectories in the higher level task planning approach of [2],
[3] to handle partly known objects or a specific task.

III. PRELIMINARIES

In this section, we first define the problem and subse-
quently discuss differential dynamic programming, which we
extend to hybrid control in the following sections.
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Fig. 2. Graphical illustration of hybrid sequential control. At time step
t the agent executes continuous and discrete controls ut and at, pays a
cost ct(xt,ut, at), and the state changes from xt to xt+1. Under partial
observability the agent does not see xt but instead makes an observation
zt. The goal is to minimize the total cost over a finite number of time steps.

A. Problem statement

In finite time-discrete hybrid sequential control, at each
time step t, the agent executes continuous control ut

1 and
discrete control at out of Na possibilities, incurs a cost
of the form ct(xt,ut, at) for intermediate time steps and
traditionally cT (xt) for the final time step T . Subsequently,
the world changes from state xt to state xt+1 according to
a dynamics function xt+1 = f(xt,ut, at). The goal is to
minimize the total cost c(xT ) +

∑T−1
t=0 c(xt,ut, at). Fig. 2

illustrates this process.
In a partially observable Markov decision process

(POMDP), the agent does not directly observe the system
state but instead makes an observation zt at each time step
t. In a POMDP, state dynamics and the observation function
are stochastic. While the agent does not observe the current
state directly, the agent can choose the control based on the
belief P (xt), a probability distribution over states, which
summarizes past controls and observations and is a sufficient
statistic for optimal decision making.

Because solving POMDPs exactly is intractable even for
small discrete problems, Gaussian belief space planning
methods [16], [17], [32] assume a multi-variate Gaussian
distribution for the state space, transitions, and observations
with a Gaussian initial belief distribution x0 ∼ N (x̂0,Σ0).
We denote with x̂ the mean and with Σ the covariance of the
belief. In a hybrid control Gaussian POMDP, the next state
depends on a possibly non-linear function f(xt,ut, at):

xt+1 = f(xt,ut, at) + m , (1)

where m ∼ N (0,M(x,u, a)) is state and control specific
multi-variate Gaussian noise. The observation zt at each time
step is specified by a possibly non-linear function h(xt) with
additive Gaussian noise:

zt = h(xt) + n , (2)

where n ∼ N (0, N(x)) is state specific multi-variate Gaus-
sian noise.

The immediate cost function is of the form c(x,u, a,Σ)
for intermediate time steps and c(x) for the final time step.
Many methods use the covariance as a term in their cost
function to penalize high uncertainty in state estimates.

1In reinforcement learning and AI research s often denotes the state, a
the control or action, and rewards, corresponding to negative costs, are used
for specifying the optimization goal.

B. Differential dynamic programming

DDP [33] is a widely used method for trajectory opti-
mization with fast convergence [34], [35] and the ability
to generate feedback controllers. In this section, we discuss
DDP and iterative linear quadratic Gaussian (iLQG) [36],
a special version of DDP which disregards second order
dynamics derivatives and adds regularization and line search
to deal with non-linear dynamics.

We will describe DDP here briefly. Please, see [12] for a
more detailed description. DDP optimization starts from an
initial nominal trajectory, a sequence of controls and states
and then applies back and forward passes in succession.
In the backwards pass, DDP quadratizes the value function
around the nominal trajectory and uses dynamic program-
ming to compute linear forward and feedback gains at each
time step. In the forward pass, DDP uses the new policy
to project a new trajectory of states and controls. The new
trajectory is then used as nominal trajectory in the next
backwards pass and so on. A short description follows but
please see [12], [33], [36] for more details.

Denote the nominal trajectory with upper bars and the
differences between the state and control w.r.t. the nominal
trajectory as ∆x = x − x̄ and ∆u = u − ū, respectively.
DDP assumes that the value function at time step t is of
quadratic form

Vt(x) = V + ∆xTV x + ∆xTV xx∆x., (3)

The one time step value difference between time step t
and t+ 1 w.r.t. states and controls

Qt(∆x,∆u) = ct(x + ∆x,u + ∆u)− ct(x,u)+

Vt+1(f(x + ∆x,u + ∆u))− Vt+1(f(x,u))

is also assumed quadratic.
Given Vt+1(x) we can compute the continuous control u

at time step t:

u = K(∆x) + k + ū (4)

K = −Q−1
uuQux and k = −Q−1

uuQu . (5)

where K is the feedback gain and k the forward gain of the
linear feedback controller. Quu, Qux, and Qu are computed
based on Qt(∆x,∆u) as detailed in [12].

Recently, [12] introduced a version of DDP that allows
efficient computation with hard control limits. Hard control
limits require quadratic programming (QP) for computing
the forward gains k:

k = arg min
∆u

1

2
∆uTQuu∆u + ∆uTQu

uLB ≤ u + ∆u ≤ uUB , (6)

where uLB and uUB are the lower and upper limits, re-
spectively. For the feedback gain matrix K, the rows cor-
responding to clamped controls are set to zero. To solve
QPs, [12] provides a gradient descent algorithm which allows
initialization of the QP with a previously computed forward
gain. Good initialization makes the approach computationally
efficient. In the next Section, we will discuss how to extend



the QP approach with equality constraints which allows
action probabilities needed by our hybrid control approach.

IV. HYBRID TRAJECTORY OPTIMIZATION

The first problem with hybrid control is that the discrete
action choice depends on the combination of discrete actions
at all time steps resulting in exponentially many combina-
tions. The second problem is that in non-linear problems
we can adjust the approximation error due to linearization
for continuous but not for discrete controls. For example,
continuous iLQG adjusts the linearization error by scaling
the forward gain k with a real valued parameter α during the
forward pass (when α approaches zero the linearization error
approaches zero). However, for discrete actions, decreasing
the amount of control change is not straightforward.

Below, we present three approaches for optimizing hy-
brid control DDP policies. The first two are simple greedy
baseline approaches which we provide for comparison. The
third more powerful approach uses a continuous mixture of
discrete actions driving the mixture during optimization into
single selection using a special cost function.

A. Greedy discrete action choice

During the DDP back pass, at each time step, the greedy
approach computes the expected value at the nominal state
and control for each discrete action separately and selects the
action which yields minimum expected cost. In the greedy
approach, there is no feedback control for discrete actions,
only the fixed actions computed during the DDP back pass.

B. Interpolated discrete action choice

The second baseline approach for hybrid control attempts
to smoothly scale the linearization error w.r.t. discrete con-
trols. The approach interpolates between nominal and new
optimized discrete actions. First, the interpolated approach
computes new actions identically to the greedy approach,
but, then uses only a fraction α of the new discrete actions
which differ from the old nominal actions. The selection of
actions is done evenly over the time steps. For example, for
α = 0.5 every other new discrete control would be used.

C. Mixture of discrete actions

The approach that we propose for hybrid control uses a
mixture of discrete actions assigning a continuous pseudo-
probability to each discrete action. During optimization,
using a specialized cost function which is discussed further
down, we drive the mixture to select a single discrete action.

Our modified control û is

û =

[
u
pa

]
, (7)

where pa contains the action probabilities. The dimension-
ality of the controls increases by the number of discrete
actions. For simplicity, we assume here a single discrete
control variable but our approach directly extends to several
discrete control variables. For several discrete controls, the
dimensionality would either be the sum of discrete control
dimensions if one treats discrete controls as independent, or,

the product of discrete control dimensions if one wants better
accuracy.

For hybrid controls, the dynamics model f(x,u, a) de-
pends on both continuous controls u and discrete actions a.
The new dynamics model is a mixture of the original one:

f̂(x, û) =
∑
a

paf(x,u, a) . (8)

Note that (8) is essentially identical to the “convexified”
dynamics function in [8] for fully observable MINLP hybrid
control. However, [8] does not present a mixture model
for immediate cost functions and our special cost function
further down that forces the system into a bang-bang solution
differs from the one in [8] because of the positive-definite
Hessian for cost functions in DDP.

For hybrid controls, we define the cost function c(x,u, a)
in the mixture model as

ĉ(x, û) =
∑
a

φ(pa)c(x,u, a) , (9)

where φ(·) is a smoothing function to make the Hessian of
the cost function positive-definite w.r.t. the linear parameters
pa. In the experiments, we used a pseudo-Huber smoothing
function

φ(p) = φ(p, 0.01), φ(p, k) =
√
p2 + k2 − k (10)

which is close to linear but has a positive second derivative.
To optimize the forward and feedback gains during dy-

namic programming, we add the following inequality and
equality constraints for the probabilities to the quadratic
program in Equation (6):

0 ≤ p ≤ 1 ,
∑
a

pa = 1 . (11)

We extend the efficient gradient descent method for quadratic
programming from [12] to deal with the equality con-
straint (11). Shortly: 1) we subtract the mean from the search
direction of probabilities satisfying the equality constraint, 2)
we modify the Armijo line search step size dynamically so
that we do not overstep probability inequality constraints.
f̂(x,u,p) can be seen as the expected dynamics of

a partially stochastic policy. For such expected dynamics
there may not be any actual control values that would
result in such dynamics. For example, in the box pushing
application a mixture of discrete actions could correspond
to pushing with several fingers although the robot may only
have one finger. However, allowing for stochastic discrete
actions in the beginning of optimization allows convergence
to a good solution, even if we force the actions to become
deterministic later. Our optimization procedure takes care
of the major problems with sequential decision making
with hybrid controls: the procedure allows to continuously
decrease the approximation error due to linearization making
local updates possible but is not subject to the combinatorial
explosion of discrete action combinations. Next we discuss
how to force a deterministic policy for discrete actions.



Forcing deterministic discrete actions. In the end, we
want a valid deterministic policy for discrete actions. There-
fore, we explicitly assign a cost to stochastic discrete actions
that increases during optimization driving stochastic discrete
controls into deterministic ones. Entropy would be a natural,
widely used, cost measure. However, the Hessian matrix
of an entropy based cost function is not positive-definite
(the second derivative is always negative). Instead, we use
the following similarly shaped smoothed piece-wise cost
function on stochastic discrete actions

cST(x,u,p) = CST

∑
a


φ(pa) if pa < pth

φ

(
(1− pa)

pth/(1− pth)

)
if pa ≥ pth

,

(12)
where pth = 1/Na and CST is an adaptive constant. Note that
while cST(x,u,p) is discontinuous at pth, derivatives can be
computed below and above pth and the cost drives solutions
away from pth for increasing CST. When at pth, which
corresponds to a uniform distribution, the cost achieves its
maximum. Note that any cost measure with zero cost for
probabilities 0 and 1 is bound to have a discontinuity when
the second derivative has to be positive. Intuitively, the posi-
tive second derivative forces the graph of the cost measure to
always curve upwards resulting in a discontinuity at the point
where the graph starting from 0 meets the graph ending at 1.

0 1

0

1Tiny image on the right shows the cost func-
tion (solid) and its second derivative (dashed)
for two discrete states and CST = 1. The x-
axis shows the state probability.

Practicalities. During optimization we
double CST everytime the cost decrease between DDP it-
erations is below a threshold. We set CST to a maximum
value when half of the maximum number of iterations has
elapsed. This allows for both smoothly increasing deter-
minicity of discrete actions and then finally deterministic
action selection. Since we run the algorithm for a finite
number of iterations and do not increase CST to infinity
some tiny stochasticity may remain. Therefore, we select the
most likely discrete action during evaluation. Note also that
due to the linear feedback control affecting probabilities we
normalize probabilities during the forward pass.

V. HYBRID TRAJECTORY OPTIMIZATION FOR
POMDPS

We are now ready to discuss hybrid control of POMDP
trajectories. We start with an iLQG approach for POMDPs
[16] and then discuss how the iLQG POMDP can be ex-
tended with hybrid controls and hard control limits.

A. DDP for POMDP trajectory optimization

The iLQG POMDP approach of [16] extends iLQG [12] to
POMDPs by using a Gaussian belief N (x̂,Σ), instead of the
fully observable state x. In the forward pass iLQG POMDP
uses a standard extended Kalman filter (EKF) to compute the
next time step belief. For the backward pass, iLQG POMDP

linearizes the covariance in addition to quadratizing states
and controls. The value function in Equation (3) becomes

Vt(x̂,Σ) = V + ∆x̂TV x̂ + ∆x̂TV x̂x̂∆x̂ + V T
Σvec[∆Σ],

(13)
where vec[∆Σ] is the difference between the current and
nominal covariance stacked column-wise into a vector and
V T

Σ is a new linear value function parameter. The related
control law/policy is shown in [16, Equation (23)].

B. Hybrid control for POMDP trajectory optimization

In the partially observable case, the direct and indirect
cost of uncertainty propagates through V Σ into other value
function components and the optimal policy has to take
uncertainty into account. However, the control law in [16,
Equation (23)] in iLQG POMDP is of equal form to the one
in basic iLQG shown in Equation (5). The only difference
is that Quu, Qux, and Qu shown in Equation (5) are
influenced by V Σ from future time steps [16]. This means
that we can directly optimize controls using the quadratic
program (QP) shown in Equation (6). Therefore, we can use
hard limits and equality constraints on continuous controls in
iLQG POMDP which is one technical insight in this paper.

A question this raises is whether we can also apply our
proposed hybrid control approach to iLQG POMDP? Yes.
Since our method of discrete action mixtures described in
Section IV-C hides the action mixture inside the dynamics
and cost functions, and, since the observation function does
not directly depend on the controls, we can directly use the
proposed hybrid control approach for POMDP optimization.

VI. EXPERIMENTS

We experimentally validate our hybrid control approach
“Mixture”, described in Section IV-C, in two different simu-
lations: autonomous car driving and pushing of an unknown
box. We are not aware of previous algorithms for trajec-
tory planning under uncertainty which operate directly on
both continuous and discrete actions. However, in the car
driving and box pushing applications, we can reasonably
map the hybrid controls directly to continuous controls and
compare against continuous iLQG [12] and continuous iLQG
POMDP [16], extended to support hard control limits, as
described in Section V-B. Note that in many hybrid control
applications, for example, with discrete switches or on-off
valves, mapping hybrid controls to continuous ones may
not be possible and a hybrid approach is required. We also
compare with greedy action selection “Greedy” described
in Section IV-A, and interpolated greedy action selection
“Interpolate” described in Section IV-B. We used a time
horizon of T = 500 and ran up to 400 optimization iterations
for each method. We set the maximum for CST (please, see
Section IV-C) to 1.28. CST starts from zero, increases to 0.01,
and then doubles every time the cost difference is below 0.01
in box pushing and 0.0001 in car driving.

A. Autonomous car driving

In autonomous car driving, the robot drives a nonholo-
nomic car, switches discrete gears, accelerates, and tries to
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Fig. 3. Mean costs and standard errors of the mean for the comparison
methods. The deterministic “Car” problem has a single trajectory and
thus no standard error. “Mixture” performs overall best and is better than
continuous “iLQG” in the three stochastic problems.

steer the car to zero position and pose. The dynamics are
identical to the car parking dynamics in [12] with a few
differences. The system state x = (x, y, w, vCAR) consists of
the position of the car (x, y), the car angle w, and the car ve-
locity vCAR. The continuous controls u = (wWHEEL, accCAR)
select the front wheel angle wWHEEL ∈ [−0.5, 0.5] and
car acceleration accCAR ∈ [0, 0.5]. We have three discrete
actions: the robot can select either 1st or 2nd gear, or
alternatively break.

In 2nd gear acceleration is halved and for breaking accel-
eration is negative. The break, 1st and 2nd gear have a soft
velocity limit: for the break and 2nd gear, when vCAR > 4,
and for the 1st gear when vCAR > 1, the car is assigned
a negative acceleration of accCAR = −0.1 simulating real
world engine breaking. Since the 1st gear has a lower soft
velocity limit than the 2nd gear but higher acceleration, to
achieve high speeds quickly one needs to accelerate first with
the 1st gear and then switch to the 2nd gear.

For initial controls we used wWHEEL = 0, 1st gear,
accCAR = 0.1. Non-optimized code on an Intel i7 CPU
took 0.47, 0.88, 0.93, and 1.03 seconds per iteration for the
“iLQG”, “Greedy”, “Interpolate”, and “Mixture” methods,
respectively. Fig. 3 displays the costs and Fig. 4 shows the
resulting trajectories and discrete controls. Due to disconti-
nuities, continuous iLQG has difficulty switching from 1st
to 2nd gear and can not achieve maximum velocity. Since
policy improvement starts in DDP from the last time step
and proceeds to the first, greedy iLQG “Greedy” does not
switch to 2nd gear. The low cost policy of the proposed
hybrid mixture method “Mixture” utilizes the 1st gear for fast
acceleration, the 2nd gear for high velocity, and the break
for slowing down. To discourage fast switching one could
add a gear/break switching cost.

In addition, we started continuous iLQG from the 2nd gear.
Note that in practice starting from 2nd gear can yield high
clutch wear. “iLQG” improved from 9.05 to 6.96 total cost
while “Mixture” was still better with 6.34 when starting from
the 1st gear, due to “iLQG” relying only on the 2nd gear for
acceleration instead of strong 1st gear initial acceleration.

B. Pushing an object

We will now describe the pushing task where the goal is
to push an unknown object into a predefined goal-zone.

State. We define the state as

x = (xC , w,xCF , µc, c) , (14)

where xC = (xC , yC) denotes the center coordinates and
w the rotation angle of the object. xCF = (xCF , yCF )
denotes the center of friction (CF) coordinates relative w.r.t.
xC . µc denotes the friction between the end effector and
the object and c the distribution friction coefficient between
object and supporting surface [30]. We assume that object
edge locations w.r.t. xC are fully observable.

Control action. When pushing we keep the speed of the
robot hand constant while using sufficient force to move the
hand. The discrete control consists of e, the discrete edge of
the object to push. The continuous control is

u = (ue, αp, v), (15)

where ue, 0 ≤ ue ≤ 1 is the continuous contact point
location along the edge, αp, −0.35π ≤ αp ≤ 0.35π is the
pushing angle w.r.t. the normal unit vector at the contact
point w.r.t. the edge, and v, 0.01 ≤ v ≤ 3 is finger velocity. It
is possible to parameterize e and ue into a single continuous
control. We do this for the continuous control version of
iLQG. The continuous control version may not be able to
jump easily from one discrete edge to another because of
the dynamics discontinuity at the corners and because of
potentially missing the box when box pose is uncertain.
When pushing the box the finger of the robot can slide
along the pushed edge. Combining sliding and non-sliding
dynamics we get the pushing dynamics as described in [30].

Observations. At each time step the robot makes an
observation about the pose of the object. The observation
function in Equation 2 is then h[xt] = (xC , w).

Cost function. Our cost function penalizes the robot for
not pushing the object into the target pose by 20φ(xC) +
20φ(yC) + 2φ(w); at each time step penalizes the dis-
tance from target location by 0.01(φ(xC , 0.1) + φ(yC , 0.1))
and controls by 10−6((αp)2 + v2); penalizes the robot
for final uncertainty by the sum of all state variances;
penalizes for getting too close to an obstacle at posi-
tion xo by −0.1 log Φ((xo − xC)T (xo − xC) − 0.5

√
2),

where Φ(·) denotes the Gaussian CDF. Finally, to avoid
missing the object, we penalize pushing too close to
a corner relative to the object rotation variance σ2

w by
0.1 exp(10(ue − cos(min(3σ2

w, 0.5π)))) + 0.1 exp(10(1 −
cos(min(3σ2

w, 0.5π))− ue)).
In the box pushing experiment, the goal is to push the

box to the target location at zero position. Position (1, 1)
contains a soft obstacle. We initialize controls to push the
bottom edge e = 0 and ue = 0.5, αp = 0, v = 1, and, for
“Mixture” pe = 1 − 10−10. In the fully observable version
the robot’s planned pushing location and angle correspond
to the real ones. In the partially observable POMDP problem
“Box POMDP” the controls are w.r.t. the planned pose and



not the actual pose, and the robot may miss the box resulting
in the box not moving. The initial standard deviation (SD)
for the xy-coordinates is 0.01 and for the rotation angle 0.1.
In “Box POMDP”, the friction parameters are known. In the
“Box unknown” experiments, the coordinates of the center
of friction are unknown and have initially a SD of 0.2 and
in “Box all unknown” also the friction parameters µc and
c are not known and have initially a SD of 0.2. At each
time step the robot gets a noisy observation about the box
position with SD 0.0001 and angle of the box with SD 0.033.
The SD of dynamics noise for xy-coordinates and rotation
is 0.01. Friction parameters µc and c had a mean of 1.

For evaluation we sampled friction parameters for “Box
unknown” and “Box all unknown”. Moreover, in order to
test a variety of different centers of friction (CFs) we
selected CFs uniformly between the box left bottom co-
ordinates (0.2, 0.2) and the top right coordinates (0.8, 0.8)
corresponding to sampling from a uniform distribution. For
the deterministic “Box” we “sampled” 52 different CFs and
for each of the stochastic “Box POMDP”, “Box unknown”,
and “Box all unknown” problems 12 different CFs. In the
stochastic problems we averaged costs for each CF over 20
sampled trajectories.

Fig. 3 shows the cost means and standard errors
over the CFs. The “iLQG”, “Greedy”, “Interpolate”,
and “Mixture” methods, on the “Box”/“Box
POMDP”/“Box unknown”/“Box all unknown” problems
took 0.86/3.03/4.32/8.61, 1.36/3.53/4.55/8.74,
1.37/3.75/5.28/10.95, and 1.59/5.80/8.60/18.06 seconds
per iteration, respectively. “Mixture” performs best. As
expected higher uncertainties decrease performance of
“Mixture”. “Interpolate”, “Greedy”, and “iLQG” seem to
have systematic problems in all setups with high uncertainty.
The heuristics of “Interpolate” and “Greedy” do not always
work and iLQG gets stuck in local optima. Fig. 5 shows
high and low cost examples for both the “Box POMDP” and
“Box unknown” problems for “iLQG” and our “Mixture”
method. In the worst case, iLQG can not escape local
optimums: the cost for potentially missing the box prevents
switching pushing sides. In the POMDP problem, for a
suitable center of friction, iLQG computes a good policy
but in the unknown POMDP problem has even in the best
case run away trajectories.

VII. CONCLUSIONS
We presented a novel DDP approach with linear feedback

control for hybrid control of trajectories under uncertainty.
The experiments indicate that our approach is useful, es-
pecially in POMDP problems. In the future, we plan on
applying the approach to a real robot. We may use online
replanning to improve the results further.
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Fig. 4. Deterministic autonomous car experiment. The goal is to drive the car quickly to zero position. The top row shows, for each method, the optimized
trajectories and the bottom row whether the car breaks, uses the 1st gear, or uses the 2nd gear at each time step.
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Fig. 5. Uncertain box pushing. The goal is to push the box using the green finger to zero position while avoiding the obstacle at (1, 1). For (a) and (b)
the box position and rotation are uncertain and partially observable, but for (c) and (d) also the red center of friction is uncertain. (a) and (c) show worst
performance and (b) and (d) the best. For one of the sampled red trajectories (20 in each plot) we display four boxes and finger configurations distributed
evenly over time. For rotation visualization one box edge is thicker than the others.
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